Variation of cloud horizontal sizes and cloud fraction over Europe 1985–2018 in high-resolution satellite data

Abstract

Aerosol-cloud interactions are a major uncertainty in estimating the anthropogenic climate change. Adjustments of cloud properties to an aerosol perturbation concern among others the cloud fraction, and have been emphasised as particularly complex. Cloud adjustments can generate important responses on the distribution of cloud horizontal sizes. We derive the cloud-size distribution as observational constraint for the cloud-fraction response from high-resolution Landsat satellite data. The goal is to carry out long-term trends in cloud sizes and cloud fraction over Europe during 1985–2018 to investigate the impact of major aerosol reductions during that time. Landsat data with a high spatial resolution of 30m was preprocessed via the web-based platform Google Earth Engine to evade the obstacle of high computational effort and time to handle the comprehensive data archive. The observed multidecadal trends indicate a widespread increase in cloud fraction during 1985–2018. This corresponds to a decrease in the number of small clouds of several 10–100m cloud length, whereas larger clouds (1 km and more), which contribute more to the cloud fraction, became more numerous. We confirm this by showing a largescale decrease of the power-law exponent describing the relative abundance of small and large clouds in the cloud-size distribution. Even though we can interpret the observed changes in cloud properties as significant trends, we do not explicitly identify a clear aerosol signal. Untangling the pure aerosol effect from other confounding factors (e.g., the local meteorology) is therefore left as an outlook for subsequent studies.Aerosol-Wolken-Wechselwirkungen stellen eine große Unsicherheit in der Quantifizierung des anthropogenen Klimawandels dar. Die sekundären Anpassungen von Wolken an eine Veränderung atmosphärischer Aerosolkonzentrationen betreffen beispielsweise denWolken-Bedeckungsgrad und sind besonders komplex. Wolkenanpassungen können sich in der Veränderung der Wolkengrößen-Verteilung widerspiegeln. Wir präsentieren eine Methode, um mittels Beobachtungen der Wolkengrößen- Verteilung zeitliche Veränderungen in Aerosol-Wolken-Wechselwirkungen nachzuweisen. Wolkengrößen-Verteilung und Wolkenbedeckungsgrad wurden mittels hochauflösender Satellitendaten der Landsat-Serie berechnet. Das Ziel ist es, langjährige Trends im Wolkenbedeckungsgrad über Europa im Zeitraum 1985–2018 herzuleiten und ggf. den Einfluss stark rückläufiger Aerosolkonzentrationen während dieser Zeit zu identifizieren. Landsat-Daten haben eine räumliche Auflösung von bis zu 30 Metern. Um die damit verbundenen großen Datenmengen prozessieren zu können, nutzen wir dieWeb-basierte Plattform Google Earth Engine. Unsere langjährigen Trends zeigen eine großskaligen Zunahme im Wolkenbedeckungsgrad zwischen 1985 und 2018. Dies ist zurückzuführen auf einen relativen Rückgang in der Anzahl kleinerer Wolken (einige 10 bis 100 Meter Länge), während größere Wolken (mehrere Kilometer),welche mehr zum Bedeckungsgrad beitragen, häufiger wurden. Dies zeigt sich im negativen Trend des Power-Law-Exponenten der Wolkengrößen- Verteilung, welcher die relative Anzahl kleiner und großer Wolken beschreibt. Auch wenn sich diese Beobachtungen als signifikante Trends herausstellen, identifizieren wir darin kein klares Aerosol-Signal. Die Isolierung des puren Aerosoleffekts von anderen beeinflussenden Faktoren, wie der lokalen Meteorologie, bietet einen Ansatzpunkt für aufbauende Studien

    Similar works