The moduli space QMg of non-zero genus g quadratic differentials has a natural action of G=GL+2(R) / ⟨±(1001) ⟩. The Veech group PSL(X,q) is the stabilizer of (X,q)∈QMg in G. We describe a new algorithm for finding elements of PSL(X,q) which, for lattice Veech groups, can be used to compute a fundamental domain and generators. Using our algorithm, we give the first explicit examples of generators and fundamental domains for non-arithmetic Veech groups where the genus of H / PSL(X,q) is greater than zero