In this article, non-linear Equal Width-Wave (EW) equation will be
numerically solved . For this aim, the non-linear term in the equation is
firstly linearized by Rubin-Graves type approach. After that, to reduce the
equation into a solvable discretized linear algebraic equation system which is
the essential part of this study, the Crank-Nicolson type approximation and
cubic Hermite collocation method are respectively applied to obtain the
integration in the temporal and spatial domain directions. To be able to
illustrate the validity and accuracy of the proposed method, six test model
problems that is single solitary wave, the interaction of two solitary waves,
the interaction of three solitary waves, the Maxwellian initial condition,
undular bore and finally soliton collision will be taken into consideration and
solved. Since only the single solitary wave has an analytical solution among
these solitary waves, the error norms Linf and L2 are computed and compared to
a few of the previous works available in the literature. Furthermore, the
widely used three invariants I1, I2 and I3 of the proposed problems during the
simulations are computed and presented. Beside those, the relative changes in
those invariants are presented. Also, a comparison of the error norms Linf and
L2 and these invariants obviously shows that the proposed scheme produces
better and compatible results than most of the previous works using the same
parameters. Finally, von Neumann analysis has shown that the present scheme is
unconditionally stable.Comment: 25 pages, 9 tables, 6 figure