Deep learning (DL) enables the development of computer models that are
capable of learning, visualizing, optimizing, refining, and predicting data. In
recent years, DL has been applied in a range of fields, including audio-visual
data processing, agriculture, transportation prediction, natural language,
biomedicine, disaster management, bioinformatics, drug design, genomics, face
recognition, and ecology. To explore the current state of deep learning, it is
necessary to investigate the latest developments and applications of deep
learning in these disciplines. However, the literature is lacking in exploring
the applications of deep learning in all potential sectors. This paper thus
extensively investigates the potential applications of deep learning across all
major fields of study as well as the associated benefits and challenges. As
evidenced in the literature, DL exhibits accuracy in prediction and analysis,
makes it a powerful computational tool, and has the ability to articulate
itself and optimize, making it effective in processing data with no prior
training. Given its independence from training data, deep learning necessitates
massive amounts of data for effective analysis and processing, much like data
volume. To handle the challenge of compiling huge amounts of medical,
scientific, healthcare, and environmental data for use in deep learning, gated
architectures like LSTMs and GRUs can be utilized. For multimodal learning,
shared neurons in the neural network for all activities and specialized neurons
for particular tasks are necessary.Comment: 64 pages, 3 figures, 3 table