Multi-Agent Search for a Moving and Camouflaging Target

Abstract

In multi-agent search planning for a randomly moving and camouflaging target, we examine heterogeneous searchers that differ in terms of their endurance level, travel speed, and detection ability. This leads to a convex mixed-integer nonlinear program, which we reformulate using three linearization techniques. We develop preprocessing steps, outer approximations via lazy constraints, and bundle-based cutting plane methods to address large-scale instances. Further specializations emerge when the target moves according to a Markov chain. We carry out an extensive numerical study to show the computational efficiency of our methods and to derive insights regarding which approach should be favored for which type of problem instance

    Similar works

    Full text

    thumbnail-image

    Available Versions