Dynamic computation has emerged as a promising avenue to enhance the
inference efficiency of deep networks. It allows selective activation of
computational units, leading to a reduction in unnecessary computations for
each input sample. However, the actual efficiency of these dynamic models can
deviate from theoretical predictions. This mismatch arises from: 1) the lack of
a unified approach due to fragmented research; 2) the focus on algorithm design
over critical scheduling strategies, especially in CUDA-enabled GPU contexts;
and 3) challenges in measuring practical latency, given that most libraries
cater to static operations. Addressing these issues, we unveil the
Latency-Aware Unified Dynamic Networks (LAUDNet), a framework that integrates
three primary dynamic paradigms-spatially adaptive computation, dynamic layer
skipping, and dynamic channel skipping. To bridge the theoretical and practical
efficiency gap, LAUDNet merges algorithmic design with scheduling optimization,
guided by a latency predictor that accurately gauges dynamic operator latency.
We've tested LAUDNet across multiple vision tasks, demonstrating its capacity
to notably reduce the latency of models like ResNet-101 by over 50% on
platforms such as V100, RTX3090, and TX2 GPUs. Notably, LAUDNet stands out in
balancing accuracy and efficiency. Code is available at:
https://www.github.com/LeapLabTHU/LAUDNet