The Longest Common Substring (LCS) and Longest Palindromic Substring (LPS)
are classical problems in computer science, representing fundamental challenges
in string processing. Both problems can be solved in linear time using a
classical model of computation, by means of very similar algorithms, both
relying on the use of suffix trees. Very recently, two sublinear algorithms for
LCS and LPS in the quantum query model have been presented by Le Gall and
Seddighin~\cite{GallS23}, requiring O~(n5/6) and
O~(nβ) queries, respectively. However, while the query
model is fascinating from a theoretical standpoint, its practical applicability
becomes limited when it comes to crafting algorithms meant for actual execution
on real hardware. In this paper we present, for the first time, a
O~(nβ) quantum algorithm for both LCS and LPS working
in the circuit model of computation. Our solutions are simpler than previous
ones and can be easily translated into quantum procedures. We also present
actual implementations of the two algorithms as quantum circuits working in
O(nβlog5(n)) and O(nβlog4(n)) time,
respectively