Trajectory design and optimization of a solar sail sun probe

Abstract

There is a desire to observe the sun's poles to further deepen our understanding of solar activity. However, because of the large speeds needed to perform out-of-ecliptic plane maneuvers, chemical and electric rocket propulsion mechanisms have been proven to be costly and impractical, leaving alternative space technology systems like solar sails to be considered for these applications. In this paper, we study the possibility of using a solar sail as a probe observing the sun. We design and optimize the trajectories of the solar sail probe through the surface constraint approach, with the assumption that the sail moves on a displaced spherical surface. We first review the surface constraint approach, focusing on its important assumptions and limitations. Then, we solve and obtain a family of radial and azimuthal trajectory equations by choosing the correct constraint equation. We characterize the trajectories based on the functional dependence of the sail's orientation with the polar angle. Finally, we determine the trajectories of the probe that will give us the minimum flight time. Results show that increasing the number of mission stages decreases the total flight time, with minimal changes in the sail's radial and polar velocities. Furthermore, changing the functional dependence of the clock angle resets the azimuthal velocity, making the sail not reverse its direction and directly approach the sun along the spherical surface.Comment: 25 pages, 8 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions