Layer Construction of Three-Dimensional Z2 Monopole Charge Nodal Line Semimetals and prediction of the abundant candidate materials

Abstract

The interplay between symmetry and topology led to the concept of symmetry-protected topological states, including all non-interacting and weakly interacting topological quantum states. Among them, recently proposed nodal line semimetal states with space-time inversion (PT\mathcal{PT}) symmetry which are classified by the Stiefel-Whitney characteristic class associated with real vector bundles and can carry a nontrivial Z2\mathbb{Z}_2 monopole charge have attracted widespread attention. However, we know less about such 3D Z2\mathbb{Z}_2 nodal line semimetals and do not know how to construct them. In this work, we first extend the layer construction previously used to construct topological insulating states to topological semimetallic systems. We construct 3D Z2\mathbb{Z}_2 nodal line semimetals by stacking of 2D PT\mathcal{PT}-symmetric Dirac semimetals via nonsymmorphic symmetries. Based on our construction scheme, effective model and combined with first-principles calculations, we predict two types of candidate electronic materials for Z2\mathbb{Z}_2 nodal line semimetals, namely 14 Si and Ge structures and 108 transition metal dichalcogenides MX2MX_2 (MM=Cr, Mo, W, XX=S, Se, Te). Our theoretical construction scheme can be directly applied to metamaterials and circuit systems. Our work not only greatly enriches the candidate materials and deepens the understanding of Z2\mathbb{Z}_2 nodal line semimetal states but also significantly extends the application scope of layer construction

    Similar works

    Full text

    thumbnail-image

    Available Versions