Ultrasound Image Synthetic Generating Using Deep Convolution Generative Adversarial Network For Breast Cancer Identification

Abstract

Breast cancer is the leading cause of death in women worldwide; prevention of possible death from breast cancer can be decreased by early identification ultrasound image analysis by classifying ultrasound images into three classes (Normal, Benign, and Malignant), where the dataset used has imbalanced data. Imbalanced data cause the classification system only to recognize the majority class, so it is necessary to handle imbalanced data. In this study, imbalanced data can be handled by implementing the Deep Convolution Generative Adversarial Network (DCGAN) method as the addition of synthetic images to the training data. The DCGAN method generates synthetic images with feature learning on a Convolutional Neural Network (CNN), making DCGAN more stable than the basic generative adversarial network method. Synthetic and original images were further classified using the CNN GoogleNet method, which performs well in image classification and with reasonable computation cost. Synthetic ultrasound images were generated using a tuning hyperparameter in the DCGAN method to adjust the input size on GoogleNet for imbalanced data handling. From the experiment result, the implementation of DCGAN-GoogleNet has a higher accuracy in handling imbalanced data than conventional augmentation and other previous research, with an accuracy value reaching 91.61%, which is 1% to 4% higher than the accuracy value in the previous method

    Similar works