Semidiscrete optical vortex droplets in quasi-phase-matched photonic crystals

Abstract

A new scheme for producing semidiscrete self-trapped vortices (\textquotedblleft swirling photon droplets\textquotedblright ) in photonic crystals with competing quadratic (χ(2)\chi ^{(2)}) and self-defocusing cubic (χ(3)\chi ^{(3)}) nonlinearities is proposed. The photonic crystal is designed with a striped structure, in the form of spatially periodic modulation of the χ(2)\chi ^{(2)} susceptibility, which is imposed by the quasi-phase-matching technique. Unlike previous realizations of semidiscrete optical modes in composite media, built as combinations of continuous and arrayed discrete waveguides, the semidiscrete vortex droplets are produced here in the fully continuous medium. This work reveals that the system supports two types of semidiscrete vortex droplets, \textit{viz}., onsite- and intersite-centered ones, which feature, respectively, odd and even numbers of stripes, N\mathcal{N}. Stability areas for the states with different values of N\mathcal{N} are identified in the system's parameter space. Some stability areas overlap with each others, giving rise to multistability of states with different N\mathcal{N}. The coexisting states are mutually degenerate, featuring equal values of the Hamiltonian and propagation constant. An experimental scheme to realize the droplets is outlined, suggesting new possibilities for the long-distance transmission of structured light carrying orbital angular momentum in nonlinear media.Comment: 9 pages, 7 figures, and 82 reference

    Similar works

    Full text

    thumbnail-image

    Available Versions