A context-aware multiple Blockchain architecture for managing low memory devices

Abstract

Blockchain technology constitutes a paradigm shift in the way we conceive distributed architectures. A Blockchain system lets us build platforms where data are immutable and tamper-proof, with some constraints on the throughput and the amount of memory required to store the ledger. This paper aims to solve the issue of memory and performance requirements developing a multiple Blockchain architecture that mixes the benefits deriving from a public and a private Blockchain. This kind of approach enables small sensors - with memory and performance constraints - to join the network without worrying about the amount of data to store. The development is proposed following a context-aware approach, to make the architecture scalable and easy to use in different scenarios

    Similar works

    Full text

    thumbnail-image

    Available Versions