Electron trapping in graphene quantum dots with magnetic flux

Abstract

It is known that the appearance of Klein tunneling in graphene makes it hard to keep or localize electrons in a graphene-based quantum dot (GQD). However, a magnetic field can be used to temporarily confine an electron that is traveling into a GQD. The electronic states investigated here are resonances with a finite trapping time, also referred to as quasi-bound states. By subjecting the GDQ to a magnetic flux, we study the scattering phenomenon and the Aharonov-Bohm effect on the lifetime of quasi-bound states existing in a GQD. We demonstrate that the trapping time increases with the magnetic flux sustaining the trapped states for a long time even after the flux is turned off. Furthermore, we discover that the probability density within the GQD is also clearly improved. We demonstrate that the trapping time of an electron inside a GQD can be successfully extended by adjusting the magnetic flux parameters.Comment: 10 pages, 7 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions