Graph Ladling: Shockingly Simple Parallel GNN Training without Intermediate Communication

Abstract

Graphs are omnipresent and GNNs are a powerful family of neural networks for learning over graphs. Despite their popularity, scaling GNNs either by deepening or widening suffers from prevalent issues of unhealthy gradients, over-smoothening, information squashing, which often lead to sub-standard performance. In this work, we are interested in exploring a principled way to scale GNNs capacity without deepening or widening, which can improve its performance across multiple small and large graphs. Motivated by the recent intriguing phenomenon of model soups, which suggest that fine-tuned weights of multiple large-language pre-trained models can be merged to a better minima, we argue to exploit the fundamentals of model soups to mitigate the aforementioned issues of memory bottleneck and trainability during GNNs scaling. More specifically, we propose not to deepen or widen current GNNs, but instead present a data-centric perspective of model soups tailored for GNNs, i.e., to build powerful GNNs. By dividing giant graph data, we build multiple independently and parallelly trained weaker GNNs (soup ingredient) without any intermediate communication, and combine their strength using a greedy interpolation soup procedure to achieve state-of-the-art performance. Compared to concurrent distributed GNN training works such as Jiong et. al. 2023, we train each soup ingredient by sampling different subgraphs per epoch and their respective sub-models are merged only after being fully trained (rather than intermediately so). Moreover, we provide a wide variety of model soup preparation techniques by leveraging state-of-the-art graph sampling and graph partitioning approaches that can handle large graphs. Codes are available at: \url{https://github.com/VITA-Group/graph_ladling}.Comment: Accepted in ICML 2023. Included comparison with a concurrent work (Jiong et. al. 2023) which independently presents similar ideas, among other SOTA distributed GNN training work

    Similar works

    Full text

    thumbnail-image

    Available Versions