Asymmetric phase diagram and dimensional crossover in a system of spin-1/2 dimers under applied hydrostatic pressure

Abstract

We present the magnetic and structural properties of [Cu(pyrazine)0.5_{0.5}(glycine)]ClO4_4 under applied pressure. As previously reported, at ambient pressure this material consists of quasi-two-dimensional layers of weakly coupled antiferromagnetic dimers which undergo Bose-Einstein condensation of triplet excitations between two magnetic field-induced quantum critical points (QCPs). The molecular building blocks from which the compound is constructed give rise to exchange strengths that are considerably lower than those found in other S=1/2S = 1/2 dimer materials, which allows us to determine the pressure evolution of the entire field-temperature magnetic phase diagram using radio-frequency magnetometry. We find that a distinct phase emerges above the upper field-induced transition at elevated pressures and also show that an additional QCP is induced at zero-field at a critical pressure of pc=15.7(5)p_{\rm c} = 15.7(5) kbar. Pressure-dependent single-crystal X-ray diffraction and density functional theory calculations indicate that this QCP arises primarily from a dimensional crossover driven by an increase in the interdimer interactions between the planes. While the effect of quantum fluctuations on the lower field-induced transition is enhanced with applied pressure, quantum Monte Carlo calculations suggest that this alone cannot explain an unconventional asymmetry that develops in the phase diagram.Comment: Submitted to Phys. Rev.

    Similar works

    Full text

    thumbnail-image

    Available Versions