Information-Theoretic Limits of Bistatic Integrated Sensing and Communication

Abstract

The bistatic integrated sensing and communication (ISAC) system model avoids the strong self-interference in a monostatic ISAC system by employing a pair of physically separated sensing transceiver and maintaining the merit of co-designing radar sensing and communications on shared spectrum and hardware. Inspired by the appealing benefits of bistatic radar, we study bistatic ISAC, where a transmitter sends a message to a communication receiver and a sensing receiver at another location carries out a decoding-and-estimation(DnE) operation to obtain the state of the communication receiver. In this paper, both communication and sensing channels are modelled as state-dependent memoryless channels with independent and identically distributed time-varying state sequences. We consider a rate of reliable communication for the message at the communication receiver as communication metric. The objective of this model is to characterize the capacity-distortion region, i.e., the set of all the achievable rate while simultaneously allowing the sensing receiver to sense the state sequence with a given distortion threshold. In terms of the decoding degree on this message at the sensing receiver, we propose three achievable DnE strategies, the blind estimation, the partial-decoding-based estimation, and the full-decoding-based estimation, respectively. Based on the three strategies, we derive the three achievable rate-distortion regions. In addition, under the constraint of the degraded broadcast channel, i.e., the communication receiver is statistically stronger than the sensing receiver, and the partial-decoding-based estimation, we characterize the capacity region. Examples in both non-degraded and degraded cases are provided to compare the achievable rate-distortion regions under three DnE strategies and demonstrate the advantages of ISAC over independent communication and sensing.Comment: 40 pages, 7 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions