Interpolation of soil infiltration in furrow irrigation: Comparison of kriging, inverse distance weighting, multilayer perceptron and principal component analysis methods

Abstract

Study on soil infiltration rate as part of water cycle is essential for managing water resources and designing irrigation systems. The present study was conducted with the aim to compare Kriging, inverse distance weighting (IDW), multilayer perceptron (MLP) and principal component analysis (PCA) methods in the interpolation of soil infiltration in furrow irrigation, and determine the best interpolation method. To conduct infiltration tests, furrows were made on the farm in four triad groups. Infiltration through the blocked furrows method was measured 10, 20, 30, 40, 50, 60, 90, 120, 150, 160, 180 and 210 min after irrigation at a 10-meter distance in each furrow. Data were analyzed by GS+ and Neuro Solutions (NS) software packages. In this study, the maximum error (ME), mean bias error (MBE), mean absolute error (MAE), root mean square error (RMSE), relative error (RE) and correlation coefficient (r) were used to compare the interpolation methods. The results of analysis of variance (ANOVA) indicated that differences in methods based on RMSE, MBE, MAE and ME indices were not significant; however, this difference was significant based on r and RE indices. According to the ANOVA results, it can be said that the PCA method with a r of 0.69 and RE of 31%, was predicted with a higher accuracy as compared to other methods

    Similar works