Parameterized Complexity of Simultaneous Planarity

Abstract

Given kk input graphs G1,…,GkG_1, \dots ,G_k, where each pair GiG_i, GjG_j with iβ‰ ji \neq j shares the same graph GG, the problem Simultaneous Embedding With Fixed Edges (SEFE) asks whether there exists a planar drawing for each input graph such that all drawings coincide on GG. While SEFE is still open for the case of two input graphs, the problem is NP-complete for kβ‰₯3k \geq 3 [Schaefer, JGAA 13]. In this work, we explore the parameterized complexity of SEFE. We show that SEFE is FPT with respect to kk plus the vertex cover number or the feedback edge set number of the the union graph Gβˆͺ=G1βˆͺβ‹―βˆͺGkG^\cup = G_1 \cup \dots \cup G_k. Regarding the shared graph GG, we show that SEFE is NP-complete, even if GG is a tree with maximum degree 4. Together with a known NP-hardness reduction [Angelini et al., TCS 15], this allows us to conclude that several parameters of GG, including the maximum degree, the maximum number of degree-1 neighbors, the vertex cover number, and the number of cutvertices are intractable. We also settle the tractability of all pairs of these parameters. We give FPT algorithms for the vertex cover number plus either of the first two parameters and for the number of cutvertices plus the maximum degree, whereas we prove all remaining combinations to be intractable.Comment: Appears in the Proceedings of the 31st International Symposium on Graph Drawing and Network Visualization (GD 2023

    Similar works

    Full text

    thumbnail-image

    Available Versions