Can lies be faked? Comparing low-stakes and high-stakes deception video datasets from a Machine Learning perspective

Abstract

Despite the great impact of lies in human societies and a meager 54% human accuracy for Deception Detection (DD), Machine Learning systems that perform automated DD are still not viable for proper application in real-life settings due to data scarcity. Few publicly available DD datasets exist and the creation of new datasets is hindered by the conceptual distinction between low-stakes and high-stakes lies. Theoretically, the two kinds of lies are so distinct that a dataset of one kind could not be used for applications for the other kind. Even though it is easier to acquire data on low-stakes deception since it can be simulated (faked) in controlled settings, these lies do not hold the same significance or depth as genuine high-stakes lies, which are much harder to obtain and hold the practical interest of automated DD systems. To investigate whether this distinction holds true from a practical perspective, we design several experiments comparing a high-stakes DD dataset and a low-stakes DD dataset evaluating their results on a Deep Learning classifier working exclusively from video data. In our experiments, a network trained in low-stakes lies had better accuracy classifying high-stakes deception than low-stakes, although using low-stakes lies as an augmentation strategy for the high-stakes dataset decreased its accuracy.Comment: 11 pages, 3 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions