NOMA-based improper signaling for multicell MISO RIS-assisted broadcast channels

Abstract

In this paper, we study the performance of reconfigurable intelligent surfaces (RISs) in a multicell broadcast channel (BC) that employs improper Gaussian signaling (IGS) jointly with non-orthogonal multiple access (NOMA) to optimize either the minimum-weighted rate or the energy efficiency (EE) of the network. We show that although the RIS can significantly improve the system performance, it cannot mitigate interference completely, so we have to employ other interference-management techniques to further improve performance. We show that the proposed NOMA-based IGS scheme can substantially outperform proper Gaussian signaling (PGS) and IGS schemes that treat interference as noise (TIN) in particular when the number of users per cell is larger than the number of base station (BS) antennas (referred to as overloaded networks). In other words, IGS and NOMA complement to each other as interference management techniques in multicell RIS-assisted BCs. Furthermore, we consider three different feasibility sets for the RIS components showing that even a RIS with a small number of elements provides considerable gains for all the feasibility sets.The associate editor coordinating the review of this manuscript and approving it for publication was Prof. Sangarapillai Lambotharan. The work of Ignacio Santamaria was supported by the Project ADELE funded by MCIN/ AEI /10.13039/501100011033, under Grant PID2019-104958RB-C43. The work of Eduard Jorswieck was supported by the Federal Ministry of Education and Research (BMBF, Germany) through the Program of Souverän. Digital. Vernetzt.” joint Project 6G-RIC, under Grants 16KISK020K and 16KISK031

    Similar works