Deep Reinforcement Learning for Distribution Network Operation and Electricity Market

Abstract

The conventional distribution network and electricity market operation have become challenging under complicated network operating conditions, due to emerging distributed electricity generations, coupled energy networks, and new market behaviours. These challenges include increasing dynamics and stochastics, and vast problem dimensions such as control points, measurements, and multiple objectives, etc. Previously the optimization models were often formulated as conventional programming problems and then solved mathematically, which could now become highly time-consuming or sometimes infeasible. On the other hand, with the recent advancement of artificial intelligence technologies, deep reinforcement learning (DRL) algorithms have demonstrated their excellent performances in various control and optimization fields. This indicates a potential alternative to address these challenges. In this thesis, DRL-based solutions for distribution network operation and electricity market have been investigated and proposed. Firstly, a DRL-based methodology is proposed for Volt/Var Control (VVC) optimization in a large distribution network, to effectively control bus voltages and reduce network power losses. Further, this thesis proposes a multi-agent (MA)DRL-based methodology under a complex regional coordinated VVC framework, and it can address spatial and temporal uncertainties. The DRL algorithm is also improved to adapt to the applications. Then, an integrated energy and heating systems (IEHS) optimization problem is solved by a MADRL-based methodology, where conventionally this could only be solved by simplifications or iterations. Beyond the applications in distribution network operation, a new electricity market service pricing method based on a DRL algorithm is also proposed. This DRL-based method has demonstrated good performance in this virtual storage rental service pricing problem, whereas this bi-level problem could hardly be solved directly due to a non-convex and non-continuous lower-level problem. These proposed methods have demonstrated advantageous performances under comprehensive case studies, and numerical simulation results have validated the effectiveness and high efficiency under different sophisticated operation conditions, solution robustness against temporal and spatial uncertainties, and optimality under large problem dimensions

    Similar works

    Full text

    thumbnail-image

    Available Versions