The temporal pattern of impulses in primary afferents analogously encodes touch and hearing information

Abstract

An open question in neuroscience is the contribution of temporal relations between individual impulses in primary afferents in conveying sensory information. We investigated this question in touch and hearing, while looking for any shared coding scheme. In both systems, we artificially induced temporally diverse afferent impulse trains and probed the evoked perceptions in human subjects using psychophysical techniques. First, we investigated whether the temporal structure of a fixed number of impulses conveys information about the magnitude of tactile intensity. We found that clustering the impulses into periodic bursts elicited graded increases of intensity as a function of burst impulse count, even though fewer afferents were recruited throughout the longer bursts. The interval between successive bursts of peripheral neural activity (the burst-gap) has been demonstrated in our lab to be the most prominent temporal feature for coding skin vibration frequency, as opposed to either spike rate or periodicity. Given the similarities between tactile and auditory systems, second, we explored the auditory system for an equivalent neural coding strategy. By using brief acoustic pulses, we showed that the burst-gap is a shared temporal code for pitch perception between the modalities. Following this evidence of parallels in temporal frequency processing, we next assessed the perceptual frequency equivalence between the two modalities using auditory and tactile pulse stimuli of simple and complex temporal features in cross-sensory frequency discrimination experiments. Identical temporal stimulation patterns in tactile and auditory afferents produced equivalent perceived frequencies, suggesting an analogous temporal frequency computation mechanism. The new insights into encoding tactile intensity through clustering of fixed charge electric pulses into bursts suggest a novel approach to convey varying contact forces to neural interface users, requiring no modulation of either stimulation current or base pulse frequency. Increasing control of the temporal patterning of pulses in cochlear implant users might improve pitch perception and speech comprehension. The perceptual correspondence between touch and hearing not only suggests the possibility of establishing cross-modal comparison standards for robust psychophysical investigations, but also supports the plausibility of cross-sensory substitution devices

    Similar works

    Full text

    thumbnail-image

    Available Versions