In-Vitro Inhalation Bioavailability Estimation of Metal(Oid)S in Atmospheric Particulate Matter (PM2.5) Using Simulated Alveolar Lysosomal Fluid: A Dialyzability Approach

Abstract

Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG[Abstract] A novel in-vitro method, by using synthetic body fluids, human physiological conditions and a simulated air-blood barrier (by using a dialysis membrane) has been developed and applied to assess in-vitro inhalation bioavailability of metal(oid)s associated to particulate matter (PM2,5) samples collected from an industrial site of the Northwest of Spain. A validated analytical methodology based on inductively coupled plasma mass spectrometry (ICP-MS) was used to analyse metal(oid)s concentrations in bioavailable fractions. This approach would be a more realistic human health risk assessment since considering processes that occur in human body in contrast the overestimation derived from current models (which consider environmental concentrations). Metal(oid)s such as Cu and Mo seemed to be the most bioavailable (mean in-vitro bioavailability ratios higher than 70%); Ba, Cd, Mn, Pb, Rb, Sb, Sn, V and Zn shown mean ratios between 20 and 60%, while low in-vitro bioavailability ratios (less than 20%) were observed for metal(oid)s such as Al, Co, Cr, Fe, Ni, Ti, and Tl. Health risk assessment via inhalation based on hazard carcinogenic and non-carcinogenic indexes (HIc and HInc, respectively) were performed considering three exposure scenarios using both inhalation bioavailable and total metal(oid)s concentrations in PM2.5 samples, suggesting no risk to human health. The influence of chemical composition on in-vitro bioavailability ratios was obtained, pointing out that inhalation ratios of Al, Ba, Cr, Cu, Fe, Ni, Pb and V seem to be affected by sea salt and/or crustal and/or biogenic and/or anthropogenic content of PM2.5.This work was supported by the Ministerio de Ciencia e Innovación (MCIN), the Agencia Estatal de Investigación (AEI) and the European Regional Development Fund (ERDF) (Proyectos de Generación de Conocimiento, en el marco del Programa Estatal para Impulsar la Investigación Científico-Técnica y su Transferencia, del Plan Estatal de Investigación Científica, Técnica y de Innovación 2021–2023, ref: PID2021-125201OB-I00); the Xunta de Galicia (Programa de Consolidación y Estructuración de Unidades de Investigación Competitivas, refs: ED431C 2021/56 (2021–2024) and ERDF-Ministerio de Economía y Empresa (MINECO) (UNLC15-DE-3097, financed together (80/20%) with the Xunta de Galicia). Natalia Novo-Quiza acknowledges the MCIN and the European Union (European Social Fund, ESF) for a predoctoral grant (PRE2019-088744). Joel Sánchez-Piñero acknowledges the Xunta de Galicia (Consellería de Cultura, Educación e Ordenación Universitaria) and the European Union (ESF) for a predoctoral grant (ED481A-2018/164) and the Xunta de Galicia (Consellería de Cultura, Educación e Universidade) for a posdoctoral grant (ED481B-2022-002). The Laboratorio de Medio Ambiente de Galicia (LMAG) of the Subdirección Xeral de Meteoroloxía e Cambio Climático (Xunta de Galicia) is also acknowledged for providing the samples used in the present research work. Funding for open access charge: Universidade da Coruña/CISUGXunta de Galicia; ED431C 2021/56Xunta de Galicia; ED481A-2018/164Xunta de Galicia; ED481B-2022-00

    Similar works