Performance Evaluation of Hybrid Precoder Design for Multi-User Massive MIMO Systems with Low-Resolution ADCs/DACs

Abstract

This paper presents a comprehensive analysis and design of a hybrid precoding system tailored for mmWave multi-user massive MIMO systems in both downlink and uplink scenarios. The proposed system employs a two-stage precoding approach, incorporating UQ and NUQ techniques, along with low-resolution DACs in downlink and ADCs in uplink to address hardware limitations. The system considers Zero Forcing and Minimum Mean Square Error algorithms as digital precoding methods for the uplink scenario, while exploring the impact of different DAC resolutions on system performance. Extensive simulations reveal that the proposed system surpasses conventional analog beamforming methods, particularly in multi-user scenarios involving inter-user interference. In downlink, the system demonstrates a trade-off between SE and EE, achieving higher Energy Efficiency with NUQ. In uplink, NUQ and UQ converters exhibit similar performance trends regardless of the chosen combiner algorithm. The proposed system attains enhanced Spectral and Energy Efficiency while maintaining reduced complexity and overhead. The study significantly contributes to the advancement of efficient and effective mmWave multi-user massive MIMO systems by providing a thorough analysis of various quantization schemes and precoding techniques. The findings of this research are expected to aid in the optimization of 5G and beyond technologies, particularly in high-density deployment scenarios

    Similar works