GAIT Technology for Human Recognition using CNN

Abstract

Gait is a distinctive biometric characteristic that can be detected from a distance; as a result, it has several uses in social security, forensic identification, and crime prevention. Existing gait identification techniques use a gait template, which makes it difficult to keep temporal information, or a gait sequence, which maintains pointless sequential limitations and loses the ability to portray a gait. Our technique, which is based on this deep set viewpoint, is immune to frame permutations and can seamlessly combine frames from many videos that were taken in various contexts, such as diversified watching, angles, various outfits, or various situations for transporting something. According to experiments, our single-model strategy obtains an average rank-1 accuracy of 96.1% on the CASIA-B gait dataset and an accuracy of 87.9% on the OU-MVLP gait dataset when used under typical walking conditions. Our model also demonstrates a great degree of robustness under numerous challenging circumstances. When carrying bags and wearing a coat while walking, it obtains accuracy on the CASIA-B of 90.8% and 70.3%, respectively, greatly surpassing the best approach currently in use. Additionally, the suggested method achieves a satisfactory level of accuracy even when there are few frames available in the test samples; for instance, it achieves 85.0% on the CASIA-B even with only 7 frames

    Similar works