Singlet fission (SF) is a multielectron process in which one singlet exciton
S converts into a pair of triplet excitons T+T. SF is widely studied as it may
help overcome the Shockley-Queisser efficiency limit for semiconductor
photovoltaic cells. To elucidate and control the SF mechanism, great attention
has been given to the identification of intermediate states in SF materials,
which often appear elusive due to the complexity and fast timescales of the SF
process. Here, we apply 10fs-1ms transient absorption techniques to high-purity
rubrene single crystals to disentangle the intrinsic fission dynamics from the
effects of defects and grain boundaries and to identify reliably the fission
intermediates. We show that above-gap excitation directly generates a hybrid
vibronically assisted mixture of singlet state and triplet-pair multiexciton
[S:TT], which rapidly (<100fs) and coherently branches into pure singlet or
triplet excitations. The relaxation of [S:TT] to S is followed by a relatively
slow and temperature-activated (48 meV activation energy) incoherent fission
process. The SF competing pathways and intermediates revealed here unify the
observations and models presented in previous studies of SF in rubrene and
propose alternative strategies for the development of SF-enhanced photovoltaic
materials