SlabLU: A Two-Level Sparse Direct Solver for Elliptic PDEs

Abstract

The paper describes a sparse direct solver for the linear systems that arise from the discretization of an elliptic PDE on a two dimensional domain. The solver is designed to reduce communication costs and perform well on GPUs; it uses a two-level framework, which is easier to implement and optimize than traditional multi-frontal schemes based on hierarchical nested dissection orderings. The scheme decomposes the domain into thin subdomains, or "slabs". Within each slab, a local factorization is executed that exploits the geometry of the local domain. A global factorization is then obtained through the LU factorization of a block-tridiagonal reduced coefficient matrix. The solver has complexity O(N5/3)O(N^{5/3}) for the factorization step, and O(N7/6)O(N^{7/6}) for each solve once the factorization is completed. The solver described is compatible with a range of different local discretizations, and numerical experiments demonstrate its performance for regular discretizations of rectangular and curved geometries. The technique becomes particularly efficient when combined with very high-order convergent multi-domain spectral collocation schemes. With this discretization, a Helmholtz problem on a domain of size 1000λ×1000λ1000 \lambda \times 1000 \lambda (for which N=100 \mbox{M}) is solved in 15 minutes to 6 correct digits on a high-powered desktop with GPU acceleration

    Similar works

    Full text

    thumbnail-image

    Available Versions