Classical surrogate simulation of quantum systems with LOWESA

Abstract

We introduce LOWESA as a classical algorithm for faithfully simulating quantum systems via a classically constructed surrogate expectation landscape. After an initial overhead to build the surrogate landscape, one can rapidly study entire families of Hamiltonians, initial states and target observables. As a case study, we simulate the 127-qubit transverse-field Ising quantum system on a heavy-hexagon lattice with up to 20 Trotter steps which was recently presented in Nature 618, 500-505 (2023). Specifically, we approximately reconstruct (in minutes to hours on a laptop) the entire expectation landscape spanned by the heavy-hex Ising model. The expectation of a given observable can then be evaluated at different parameter values, i.e. with different onsite magnetic fields and coupling strengths, in fractions of a second on a laptop. This highlights that LOWESA can attain state-of-the-art performance in quantum simulation tasks, with the potential to become the algorithm of choice for scanning a wide range of systems quickly.Comment: 13 pages, 6 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions