The Complexity of Recognizing Geometric Hypergraphs

Abstract

As set systems, hypergraphs are omnipresent and have various representations ranging from Euler and Venn diagrams to contact representations. In a geometric representation of a hypergraph H=(V,E)H=(V,E), each vertex v∈Vv\in V is associated with a point pv∈Rdp_v\in \mathbb{R}^d and each hyperedge e∈Ee\in E is associated with a connected set seβŠ‚Rds_e\subset \mathbb{R}^d such that {pv∣v∈V}∩se={pv∣v∈e}\{p_v\mid v\in V\}\cap s_e=\{p_v\mid v\in e\} for all e∈Ee\in E. We say that a given hypergraph HH is representable by some (infinite) family FF of sets in Rd\mathbb{R}^d, if there exist PβŠ‚RdP\subset \mathbb{R}^d and SβŠ†FS \subseteq F such that (P,S)(P,S) is a geometric representation of HH. For a family F, we define RECOGNITION(F) as the problem to determine if a given hypergraph is representable by F. It is known that the RECOGNITION problem is βˆƒR\exists\mathbb{R}-hard for halfspaces in Rd\mathbb{R}^d. We study the families of translates of balls and ellipsoids in Rd\mathbb{R}^d, as well as of other convex sets, and show that their RECOGNITION problems are also βˆƒR\exists\mathbb{R}-complete. This means that these recognition problems are equivalent to deciding whether a multivariate system of polynomial equations with integer coefficients has a real solution.Comment: Appears in the Proceedings of the 31st International Symposium on Graph Drawing and Network Visualization (GD 2023) 17 pages, 11 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions