Learning-based wildfire tracking with unmanned aerial vehicles

Abstract

This project attempts to design a path planning algorithm for a group of unmanned aerial vehicles (UAVs) to track multiple spreading wildfire zones on a wildland. Due to the physical limitations of UAVs, the wildland is partially observable. Thus, the fire spreading is difficult to model. An online training regression neural network using real-time UAV observation data is implemented for fire front positions prediction. The wildfire tracking with UAVs path planning algorithm is proposed by Q-learning. Various practical factors are considered by designing an appropriate cost function which can describe the tracking problem, such as importance of the moving targets, field of view of UAVs, spreading speed of fire zones, collision avoidance between UAVs, obstacle avoidance, and maximum information collection. To improve the computation efficiency, a vertices-based fire line feature extraction is used to reduce the fire line targets. Simulation results under various wind conditions validate the fire prediction accuracy and UAV tracking performance.Includes bibliographical references

    Similar works