Towards naturalistic scanning environments for wearable magnetoencephalography

Abstract

Magnetoencephalography (MEG) is a neuroimaging technique that probes human brain function, by measuring the magnetic fields generated at the scalp by current flow in assemblies of neurons. A direct measure of neural activity, MEG offers high spatiotemporal resolution, but limitations imposed by superconducting sensor technologies impede its clinical utility. Specifically, neuromagnetic fields are up to a billion times smaller than that of the Earth, meaning MEG must be performed inside a magnetically shielded room (MSR), which is typically expensive, heavy, and difficult to site. Furthermore, current MEG systems employ superconducting quantum interference devices (SQUIDs) to detect these tiny magnetic fields, however, these sensors require cryogenic cooling with liquid helium. Consequently, scanners are bulky, expensive, and the SQUIDs must be arranged in a fixed, one-size-fits-all array. Any movement relative to the fixed sensors impacts data quality, meaning participant movement in MEG is severely restricted. The development of technology to enable a wearable MEG system allowing free participant movement would generate a step change for the field. Optically-pumped magnetometers (OPMs) are an alternative magnetic field detector recently developed with sufficient sensitivity for MEG measurements. Operating at body temperature, in a small and lightweight sensor package, OPMs offer the potential for a wearable MEG scanner that allows participant movement, with sensors mounted on the scalp in a helmet or cap. However, OPMs operate around a zero-field resonance, resulting in a narrow dynamic range that may be easily exceeded by movement of the sensor within a background magnetic field. Enabling a full range of participant motion during an OPM-MEG scan therefore presents a significant challenge, requiring precise control of the background magnetic field. This thesis describes the development of techniques to better control the magnetic environment for OPM-MEG. This includes greater reduction of background magnetic fields over a fixed region to minimise motion artefacts and facilitate larger movements, and the application of novel, multi-coil active magnetic shielding systems to enable flexibility in participant positioning within the MSR. We outline a new approach to map background magnetic fields more accurately, reducing the remnant magnetic field to <300 pT and yielding a five-fold reduction in motion artefact, to allow detection of a visual steady-state evoked response during continuous head motion. Employing state-of-the-art, triaxial OPMs alongside this precision magnetic field control technique, we map motor function during a handwriting task involving naturalistic head movements and investigate the advantages of triaxial sensitivity for MEG data analysis. Using multi-coil active magnetic shielding, we map motor function consistently in the same participant when seated and standing, and demonstrate the first OPM-MEG hyperscanning experiments. Finally, we outline how the integration of a multi-coil system into the walls of a lightweight MSR, when coupled with field control over a larger volume, provides an open scanning environment. In sum, these developments represent a significant step towards realising the full potential of OPM-MEG as a wearable functional neuroimaging technology

    Similar works