Sound mosaics: a graphical user interface for sound synthesis based on audio-visual associations.

Abstract

This thesis presents the design of a Graphical User Interface (GUI) for computer-based sound synthesis to support users in the externalisation of their musical ideas when interacting with the System in order to create and manipulate sound. The approach taken consisted of three research stages. The first stage was the formulation of a novel visualisation framework to display perceptual dimensions of sound in Visual terms. This framework was based on the findings of existing related studies and a series of empirical investigations of the associations between auditory and visual precepts that we performed for the first time in the area of computer-based sound synthesis. The results of our empirical investigations suggested associations between the colour dimensions of brightness and saturation with the auditory dimensions of pitch and loudness respectively, as well as associations between the multidimensional precepts of visual texture and timbre. The second stage of the research involved the design and implementation of Sound Mosaics, a prototype GUI for sound synthesis based on direct manipulation of visual representations that make use of the visualisation framework developed in the first stage. We followed an iterative design approach that involved the design and evaluation of an initial Sound Mosaics prototype. The insights gained during this first iteration assisted us in revising various aspects of the original design and visualisation framework that led to a revised implementation of Sound Mosaics. The final stage of this research involved an evaluation study of the revised Sound Mosaics prototype that comprised two controlled experiments. First, a comparison experiment with the widely used frequency-domain representations of sound indicated that visual representations created with Sound Mosaics were more comprehensible and intuitive. Comprehensibility was measured as the level of accuracy in a series of sound image association tasks, while intuitiveness was related to subjects' response times and perceived levels of confidence. Second, we conducted a formative evaluation of Sound Mosaics, in which it was exposed to a number of users with and without musical background. Three usability factors were measured: effectiveness, efficiency, and subjective satisfaction. Sound Mosaics was demonstrated to perform satisfactorily in ail three factors for music subjects, although non-music subjects yielded less satisfactory results that can be primarily attributed to the subjects' unfamiliarity with the task of sound synthesis. Overall, our research has set the necessary groundwork for empirically derived and validated associations between auditory and visual dimensions that can be used in the design of cognitively useful GUIs for computer-based sound synthesis and related area

    Similar works