A QoS-based flow assignment for traffic engineering in software-defined networks

Abstract

In order to meet a tremendous amount of data storage requirement in next-generation wireless networks, an increasing number of cloud data centers has been deployed around the world. The underlying core networks are expected to provide the ability to store data in a dynamic and scalable computing environment. The traditional Internet Protocol (IP) has shown to be restricted due to its static architecture, which accordingly motivates the development of Software-Defined Networks (SDNs). In the SDNs, Traffic Engineering (TE) is simpler and programmable with a controller without the requirement of reconfiguration for all network devices. However, the existing TE algorithm of the SDNs rejects a number of requested flows caused by their undetermined routing paths where only flow bandwidth is considered in path determination. This paper proposes a Quality-of-Service (QoS) based Flow Assignment algorithm which enables the computation of end-to-end path for traffic flows guaranteeing the QoS requirements including bandwidth, end-to-end delay and packet loss probability. Through the Open Source Hybrid IP/SDNs platform, the proposed algorithm is validated and shown to significantly reduce flow rejection rate of up to 50% compared to the conventional approach, and therefore can be used to implement an effective DiffServ mechanism for flow allocation in the SDNs

    Similar works