Synergies between SKA and ALMA: observations of Nearby Galaxies

Abstract

The past decade has seen amazing advances in radioastronomy, which led to the construction of brand-new instruments such as LOFAR and ALMA, and the updating of existing ones, e. g. JVLA and e-MERLIN. The SKA will be the spearhead of a future technological development and it will change the way astrophysical topics have been studied so far by opening up new frequency windows with unprecedented spatial resolution and sensitivity. The SKA location in the southern hemisphere makes it particularly suitable to complement ALMA, which is already giving exciting results both on the local and the more distant Universe. Among the possible synergies between SKA and ALMA, we focus on the observations of nearby star forming galaxies. Star formation processes in galaxies involve all the components of the interstellar medium, so the only way to have a complete picture of them is through multifrequency observations. ALMA observes gas and dust emission, while the SKA will trace both the free-free thermal and the non-thermal synchrotron emission. The spatial comparison between these components gives information about the contribution to star formation processes provided by magnetic fields and cosmic rays. The high spatial resolution achievable with ALMA and SKA will make it possible to compare these emissions on very small spatial scales, by resolving single molecular clouds in nearby galaxies. By the time the SKA will start observing, ALMA will have already imaged many nearby galaxies in the southern hemisphere, for which no low frequency data at comparably high spatial resolution will be available. The SKA will fill this gap, and have a profound impact on the studies of nearby galaxies, making valuable contributions to our understanding of star formation processes, and of the role of magnetic fields and cosmic rays in them

    Similar works