Disturbance observer-based adaptive sliding mode synchronization control for uncertain chaotic systems

Abstract

The synchronization control problem of a class of chaotic systems with unknown uncertainties and outside perturbation is addressed in this article by employing an innovative adaptive sliding mode controller (SM, SMC) constructed using a disturbance observer (DO). For the synchronous error system, the external disturbances estimated by the disturbance observer cannot be measured directly. If the appropriate gain matrix is chosen, the DO can approximate the unknown external disturbances well. Then a continuous adaptive SM controller based on the DO's output is designed by using adaptive techniques and the system dimensional expansion method. The Duffing-Holmes chaotic system is finally selected to numerically test the efficiency of the suggested strategy

    Similar works