RESEARCH ON THE ASEISMIC BEHAVIOR OF LONG-SPAN CABLE-STAYED BRIDGE WITH DAMPING EFFECT

Abstract

The main beam of a cable-stayed bridge with a floating system may have a larger longitudinal displacement subject to earthquake effect. Thus, seismic control and isolation are crucial to bridge safety. This paper takes Huai’an Bridge, which has elastic coupling devices and viscous dampers set at the joint of the tower and the beam, as the research background. Its finite element model is established, and the elastic stiffness of elastic coupling devices and damper parameters are analyzed. Viscous damper and elastic coupling devices are simulated using Maxwell model and spring elements, and their damping effects are analyzed and compared through structural dynamic time-history analysis. Results show that viscous damper and elastic coupling device furnished at the joint of tower and beam of a cable-stayed bridge tower beam can effectively reduce the longitudinal displacement of the key part of the construction subject to earthquake effect, perfect the internal force distribution, and improve the aseismic performance. Between the two, viscous damper has better damping effects

    Similar works