Synthesis and characterization of starch ether/alginate hydrogels with reversible and tunable thermoresponsive properties

Abstract

A thermoresponsive hydrogel that was composed of 2-hydroxy-3-isopropoxypropyl starch (HIPS) and alginate was synthesized via cross-linking with hybrid crosslinkers including ethylene glycol diglycidyl ether (EDGE) and calcium chloride (CaCl _2 ). Attenuated total reflection infrared spectroscopy (ATR-IR), thermogravimetric analysis (TGA) and derivative thermogravimetry (DTG) were used to confirm that cross-linking occurred. The porous architecture of the HIPS/SA composite hydrogels was investigated using scanning electron microscopy (SEM). Composite hydrogels had a tunable volume phase transition temperature (VPTT) that was in the range from 29.4 to 40.2 °C and resulted from changes in the compositions (HIPS concentration from 5.5 to 7.5 wt%). It was also found that the presence of NaCl (0 to 20 g l ^−1 ) or organic solvents (alcohols, 0 to 50 g l ^−1 ) in aqueous medium changed the VPTT of the composite hydrogels; also, the VPTT decreased as the concentration of NaCl or organic solvents increased. Additionally, alcohols that have long carbon chains (isopropanol > ethanol > methanol) exhibited a more significant effect on the VPTT of hydrogel. The hydrogel could shed and absorb most of the water in a very short time and demonstrate a stable reversible swelling-deswelling property after 5 swelling-deswelling cycles

    Similar works

    Full text

    thumbnail-image