Interlacing in atomic resolution scanning transmission electron microscopy

Abstract

Fast frame-rates are desirable in scanning transmission electron microscopy for a number of reasons: controlling electron beam dose, capturing in-situ events or reducing the appearance of scan distortions. Whilst several strategies exist for increasing frame-rates, many impact image quality or require investment in advanced scan hardware. Here we present an interlaced imaging approach to achieve minimal loss of image quality with faster frame-rates that can be implemented on many existing scan controllers. We further demonstrate that our interlacing approach provides the best possible strain precision for a given electron dose compared with other contemporary approaches

    Similar works