Communication-Efficient Decentralized Multi-Agent Reinforcement Learning for Cooperative Adaptive Cruise Control

Abstract

Connected and autonomous vehicles (CAVs) promise next-gen transportation systems with enhanced safety, energy efficiency, and sustainability. One typical control strategy for CAVs is the so-called cooperative adaptive cruise control (CACC) where vehicles drive in platoons and cooperate to achieve safe and efficient transportation. In this study, we formulate CACC as a multi-agent reinforcement learning (MARL) problem. Diverging from existing MARL methods that use centralized training and decentralized execution which require not only a centralized communication mechanism but also dense inter-agent communication, we propose a fully-decentralized MARL framework for enhanced efficiency and scalability. In addition, a quantization-based communication scheme is proposed to reduce the communication overhead without significantly degrading the control performance. This is achieved by employing randomized rounding numbers to quantize each piece of communicated information and only communicating non-zero components after quantization. Extensive experimentation in two distinct CACC settings reveals that the proposed MARL framework consistently achieves superior performance over several contemporary benchmarks in terms of both communication efficiency and control efficacy.Comment: 11 pages, 7 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions