A Predictive maintenance model for heterogeneous industrial refrigeration systems

Abstract

The automatic assessment of the degradation state of industrial refrigeration systems is becoming increasingly important and constitutes a key-role within predictive maintenance approaches. Lately, data-driven methods especially became the focus of research in this respect. As they only rely on historical data in the development phase, they offer great advantages in terms of flexibility and generalisability by circumventing the need for specific domain knowledge. While most scientific contributions employ methods emerging from the field of machine learning (ML), only very few consider their applicability amongst different heterogeneous systems. In fact, the majority of existing contributions in this field solely apply supervised ML models, which assume the availability of labelled fault data for each system respectively. However, this places restrictions on the overall applicability, as data labelling is mostly conducted by humans and therefore constitutes a non-negligible cost and time factor. Moreover, such methods assume that all considered fault types occurred in the past, a condition that may not always be guaranteed to be satisfied. Therefore, this dissertation proposes a predictive maintenance model for industrial refrigeration systems by especially addressing its transferability onto different but related heterogeneous systems. In particular, it aims at solving a sub-problem known as condition-based maintenance (CBM) to automatically assess the system’s state of degradation. To this end, the model does not only estimate how far a possible malfunction has progressed, but also determines the fault type being present. As will be described in greater detail throughout this dissertation, the proposed model also utilises techniques from the field of ML but rather bypasses the strict assumptions accompanying supervised ML. Accordingly, it assumes the data of the target system to be primarily unlabelled while a few labelled samples are expected to be retrievable from the fault-free operational state, which can be obtained at low cost. Yet, to enable the model’s intended functionality, it additionally employs data from only one fully labelled source dataset and, thus, allows the benefits of data-driven approaches towards predictive maintenance to be further exploited. After the introduction, the dissertation at hand introduces the related concepts as well as the terms and definitions and delimits this work from other fields of research. Furthermore, the scope of application is further introduced and the latest scientific work is presented. This is then followed by the explanation of the open research gap, from which the research questions are derived. The third chapter deals with the main principles of the model, including the mathematical notations and the individual concepts. It furthermore delivers an overview about the variety of problems arising in this context and presents the associated solutions from a theoretical point of view. Subsequently, the data acquisition phase is described, addressing both the data collection procedure and the outcome of the test cases. In addition, the considered fault characteristics are presented and compared with the ones obtained from the related publicly available dataset. In essence, both datasets form the basis for the model validation, as discussed in the following chapter. This chapter then further comprises the results obtained from the model, which are compared with the ones retrieved from several baseline models derived from the literature. This work then closes with a summary and the conclusions drawn from the model results. Lastly, an outlook of the presented dissertation is provide

    Similar works