Artificial Intelligence-Based Methods for Power System Security Assessment with Limited Dataset

Abstract

This thesis concerns the relationship between the load, load model, and power system stability. It investigates the possibility of developing a dynamic load model to represent the power system load characteristic during system faults when the power system operates at a high percentage of the power generation from wind farms, solar power, and vehicle-to-grid technology. Additionally, with artificial intelligence supporting the seamless integration of an increasingly distributed and multi-directional power system to unlock the vast potential of renewables, new approaches are proposed to improve the training performance for the applications of artificial neural networks in non-intrusive load monitoring and dynamic security assessment. An improved hybrid load model is proposed to represent the load characteristics in the above power system operation. Genetic algorithms and the multi-curve identification method are applied to determine the parameters of the load model, aiming to minimize the error between the estimated and measured values. The results indicate that the proposed hybrid load model has a reasonably low fitting error to represent the load dynamics. In addition, new approaches are proposed to tackle the challenges posed by limited data when training artificial neural networks (ANNs) for their application in power systems. The knowledge transfer approach is utilized to support the ANN training to generate synthetic data for non-intrusive load monitoring. The results indicate that this approach improves the issue of mode collapse and reduces the need for lengthy training iterations, making the ANN effective for generating synthetic data from limited data. Moreover, the knowledge transfer approach also supports ANN training with limited data for dynamic security assessment. Kernel principal component analysis is employed to eliminate the dimensionality reduction step. The results indicate an improvement in the training performance

    Similar works