Land use/cover spatiotemporal dynamics, and implications on environmental and bioclimatic factors in Chingola district, Zambia

Abstract

This study uses remote sensing and GIS techniques to examine the intensity and dynamics of land use/cover change and environmental indices across a four-decade period in the Chingola district of Zambia, from 1972 to 2020 using five classification stages (1972, 1992, 2001, 2013, and 2020). A total of 10 key climate change detection monitoring indices were generated using RClimDex to examine the implications of land degradation on the bioclimatic factors from 1983 to 2020. The findings revealed a significant expansion in Built-ups (7.3%/year), farmlands (3.18%/year), and mining areas (0.82%/year) at the expense of natural resources. The highest human pressure was exerted on Savannah woodlands (−0.78), through agriculture (0.76) and infrastructure development (0.44) between 1992 and 2001.The analysis of the bioclimatic indices revealed a significant decline in rainfall quantity and intensity, and a rising in temperature (warmer days and nights). The Annual rainfall has decreased by −3.25%, while the potential evapotranspiration has increased by 0.04% from 1983 to 2020, resulting in an Aridity Index of 0.60 and a moisture deficit index of −0.42. To offset agriculture’s propensity to spatially expand and further encroach into savannah woodlands and forests, urban containment policies and programs that stimulate agricultural intensification are needed to reduce urban sprawl and protect the city’s remaining forestlands.The World Bank financially supported this research through the African Centre of Excellence on Sustainable Mining (ACESM) Scholarship program of Copperbelt University.https://www.tandfonline.com/loi/tgnh20hj2023Plant Production and Soil Scienc

    Similar works