Magnetohydrodynamical torsional oscillations from thermo-resistive instability in hot jupiters

Abstract

Hot jupiter atmospheres may be subject to a thermo-resistive instability where an increase in the electrical conductivity due to ohmic heating results in runaway of the atmospheric temperature. We introduce a simplified one-dimensional model of the equatorial sub-stellar region of a hot jupiter which includes the temperature-dependence and time-dependence of the electrical conductivity, as well as the dynamical back-reaction of the magnetic field on the flow. This model extends our previous one-zone model to include the radial structure of the atmosphere. Spatial gradients of electrical conductivity strongly modify the radial profile of Alfv\'en oscillations, leading to steepening and downwards transport of magnetic field, enhancing dissipation at depth. We find unstable solutions that lead to self-sustained oscillations for equilibrium temperatures in the range Teq1000T_\mathrm{eq}\approx 1000--12001200~K, and magnetic field in the range 10\approx 10--100100~G. For a given set of parameters, self-sustained oscillations occur in a narrow range of equilibrium temperatures which allow the magnetic Reynolds number to alternate between large and small values during an oscillation cycle. Outside of this temperature window, the system reaches a steady state in which the effect of the magnetic field can be approximated as a magnetic drag term. Our results show that thermo-resistive instability is a possible source of variability in magnetized hot jupiters at colder temperatures, and emphasize the importance of including the temperature-dependence of electrical conductivity in models of atmospheric dynamics.Comment: Submitted to The Astrophysical Journa

    Similar works

    Full text

    thumbnail-image

    Available Versions