To Study the Effect of Boundary Conditions and Disorder in Spin Chain Systems Using Quantum Computers

Abstract

Condensed matter physics plays a crucial role in modern scientific research and technological advancements, providing insights into the behavior of materials and their fundamental properties. Understanding complex phenomena and systems in condensed matter physics poses significant challenges due to their inherent intricacies. Over the years, computational approaches have been pivotal in unraveling the mysteries of condensed matter physics, but they face limitations when dealing with large-scale systems and simulating quantum effects accurately. Quantum simulation and quantum computation techniques have emerged as promising tools for addressing these limitations, offering the potential to revolutionize our understanding of condensed matter physics. In this paper, we focus on the simulation of Anderson localization in the Heisenberg spin chain systems and explore the effects of disorder on closed and open chain systems using quantum computers

    Similar works

    Full text

    thumbnail-image

    Available Versions