CORE
🇺🇦Â
 make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Non-locality of the energy density for all single-photon states
Authors
Maxime Federico
Hans-Rudolf Jauslin
Publication date
2 August 2023
Publisher
View
on
arXiv
Abstract
The non-locality of single-photon states has been analyzed from several different but interrelared perspectives. In this article, we propose a demonstration based on the electromagnetic energy density observable and on the anti-local property of the frequency operator
Ω
=
c
(
−
Δ
)
1
/
2
\Omega=c(-\Delta)^{1/2}
Ω
=
c
(
−
Δ
)
1/2
. The present proof is based on the standard quantization of the electromagnetic field, which can be formulated equivalently in the momentum representations or in the position representations of Landau-Peierls and of Bia{\l}ynicki-Birula. Our proof extends to all single-photon states the results of Bia{\l}ynicki-Birula, that were formulated for two particular classes of states, involving either a uniform localization [I. Bia{\l}ynicki-Birula, Phys. Rev. Lett. {\bf80} 5247 (1998)], or alternatively, states that are electrically or magnetically localized, as defined in [I. Bia{\l}ynicki-Birula, Z. Bia{\l}ynicka-Birula, Phys.Rev. A {\bf79} 032112 (2009)]. Our approach is formulated in terms of Knight's definition of strict localization, based on the comparison of single-photon states expectation values of local observables with that of the vacuum
Similar works
Full text
Available Versions
arXiv.org e-Print Archive
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:arXiv.org:2306.09793
Last time updated on 20/06/2023