Square Functions for Ritt Operators in L1L^1

Abstract

TT is a Ritt operator in LpL^p if sup⁑nnβˆ₯Tnβˆ’Tn+1βˆ₯<∞\sup_n n\|T^n-T^{n+1}\|<\infty. From \cite{LeMX-Vq}, if TT is a positive contraction and a Ritt operator in LpL^p, 1<p<∞1<p<\infty, the square function (βˆ‘nn2m+1∣Tn(Iβˆ’T)m+1f∣2)1/2\left( \sum_n n^{2m+1} |T^n(I-T)^{m+1}f|^2 \right)^{1/2} is bounded. We show that if TT is a Ritt operator in L1L^1, QΞ±,s,mf=(βˆ‘nnα∣Tn(Iβˆ’T)mf∣s)1/sQ_{\alpha,s,m}f=\left( \sum_n n^{\alpha} |T^n(I-T)^mf|^s \right)^{1/s} is bounded L1L^1 when Ξ±+1<sm\alpha+1<sm, and examine related questions on variational and oscillation norms

    Similar works

    Full text

    thumbnail-image

    Available Versions