Quantum Computing Quantum Monte Carlo

Abstract

Quantum computing and quantum Monte Carlo (QMC) are respectively the state-of-the-art quantum and classical computing methods for understanding many-body quantum systems. Here, we propose a hybrid quantum-classical algorithm that integrates these two methods, inheriting their distinct features in efficient representation and manipulation of quantum states and overcoming their limitations. We first introduce non-stoquasticity indicators (NSIs) and their upper bounds, which measure the sign problem, the most notable limitation of QMC. We show that our algorithm could greatly mitigate the sign problem, which decreases NSIs with the assistance of quantum computing. Meanwhile, the use of quantum Monte Carlo also increases the expressivity of shallow quantum circuits, allowing more accurate computation that is conventionally achievable only with much deeper circuits. We numerically test and verify the method for the N2_2 molecule (12 qubits) and the Hubbard model (16 qubits). Our work paves the way to solving practical problems with intermediate-scale and early-fault tolerant quantum computers, with potential applications in chemistry, condensed matter physics, materials, high energy physics, etc

    Similar works

    Full text

    thumbnail-image

    Available Versions