In transition-metal-oxide heterostructures, the anomalous Hall effect (AHE)
is a powerful tool for detecting the magnetic state and revealing intriguing
interfacial magnetic orderings. However, achieving a larger AHE at room
temperature in oxide heterostructures is still challenging due to the dilemma
of mutually strong spin-orbit coupling and magnetic exchange interactions.
Here, we exploit the Ru doping-enhanced AHE in LSMRO epitaxial films. As the
B-site Ru doping level increases up to 20 percent, the anomalous Hall
resistivity at room temperature can be enhanced from nOhmcm to uOhmcm scale. Ru
doping leads to strong competition between ferromagnetic double-exchange
interaction and antiferromagnetic super-exchange interaction. The resultant
spin frustration and spin-glass state facilitate a strong skew-scattering
process, thus significantly enhancing the extrinsic AHE. Our findings could
pave a feasible approach for boosting the controllability and reliability of
oxide-based spintronic devices