A Quantum Convolutional Neural Network Approach for Object Detection and Classification

Abstract

This paper presents a comprehensive evaluation of the potential of Quantum Convolutional Neural Networks (QCNNs) in comparison to classical Convolutional Neural Networks (CNNs) and Artificial / Classical Neural Network (ANN) models. With the increasing amount of data, utilizing computing methods like CNN in real-time has become challenging. QCNNs overcome this challenge by utilizing qubits to represent data in a quantum environment and applying CNN structures to quantum computers. The time and accuracy of QCNNs are compared with classical CNNs and ANN models under different conditions such as batch size and input size. The maximum complexity level that QCNNs can handle in terms of these parameters is also investigated. The analysis shows that QCNNs have the potential to outperform both classical CNNs and ANN models in terms of accuracy and efficiency for certain applications, demonstrating their promise as a powerful tool in the field of machine learning

    Similar works

    Full text

    thumbnail-image

    Available Versions