Effects of Microencapsulated Blends of Organics Acids (OA) and Essential Oils (EO) as a Feed Additive for Broiler Chicken. A Focus on Growth Performance, Gut Morphology and Microbiology

Abstract

Simple Summary Replacing antibiotics with natural alternative compounds in poultry feeding is being increased in the last few years to challenge the antibiotic resistance problem. Among natural compounds, organic acids and essential oils could be a favorable option. The goal of the trial was testing the dietary supplementation of a blend of organic acids and essential oils in broiler diets in order to evaluate growth performance and gut healthiness. The blend of organic acids and essential oils improved growth performances at the end of the growing period and favorably affected, to a certain extent, gut morphology at different gut districts. Moreover, a selective microbial control against Clostridium perfringens, Enterobacteriaceae, Enterococci and Mesophilic bacteria was found. Additionally, in litter, organic acids and essential oils dietary treatment drove to an overall decrease of Mesophilic bacteria and Enterococci counts. Overall, dietary strategy oriented to a supplementation of a mixture of organic acids and essential oils in broiler diets could offer some favorable perspectives in order to maintain adequate growth performance and gut healthiness either in term of morphology or of microbiology. Nevertheless, improving knowledge on the mechanisms of action of these natural additives together with a potential synergistic action is pivotal to clarify their potential as antibiotic replacers. Abstract The goal of the trial was testing the effects of a blend of organic acids and essential oils dietary supplementation on growth performance and gut healthiness in broiler chickens. In total, 420 male Ross 308 chicks (1-day old) were randomly assigned to two dietary treatments: basal (BD) and organic acids and essential oils (OA&EO) diets (three replicates/treatment; 70 broilers/replicate). BD group received commercial diets whereas OA&EO group basal diets + 5 g/kg of microencapsulated organic acids and essential oils. OA&EO treatment improved the average daily gain (p < 0.01) and feed conversion ratio at 37–47 days compared to BD treatment. OA&EO treatment improved gut morphology mostly at ileum and duodenum levels in terms of villi height, crypt depth, number of villi, mucosa thickness and villi area at 24 and 34 sampling days. A certain selective action against Clostridium perfringens in ileum of OA&EO group was shown at 33 (p = 0.053) and 46 days (p = 0.09) together with lower median values for Enterobacteriaceae, Enterococci, Mesophilic bacteria and Clostridium perfringens at ceca level. Overall, organic acids and essential oils supplementation improved growth performance in the final growth stage and some morphological gut traits and reduced to a certain extent Clostridium perfringens count in ileum

    Similar works